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Patterns with octagonal and icosahedral symmetries obtained from periodic

two-dimensional (2D) 8-grids and three-dimensional (3D) 12-grids by the dual

method are shown to be superstructures of the Beenker pattern and the 3D

Penrose pattern with the same edge length. The superstructures are described in

the same spaces as those of the latter (4D for the Beenker and 6D for the 3D

Penrose patterns) in the section method but their lattice constants are doubled.

The occupation domains and the diffraction patterns for these cases are given.

1. Introduction

Since the discovery of an icosahedral Al–Mn quasicrystal

(i-Al–Mn), extensive theoretical and structural studies have

been performed. A quasicrystal is a quasiperiodic structure

with non-crystallographic symmetry in contrast to modulated

structures and composite crystals. Quasiperiodic patterns with

non-crystallographic symmetry play an important role in

structure analyses of quasicrystals (Yamamoto, 1996). It is

known that there exist three distinct methods for the

generation of quasiperiodic patterns, which are called the

inflation–deflation method (IDM), the dual method (DM) and

the projection method (PM). These methods were introduced

by de Bruijn (1981) and applied to the Penrose pattern. The

DM was extended to derive an icosahedral pattern (Kramer &

Neri, 1984), and the so-called three-dimensional Penrose

pattern (3DPP) was shown to be a special case of general

icosahedral patterns. The PM was applied to general dihedral

cases (Whittaker & Whittaker, 1988) to obtain generalized

quasiperiodic patterns. This is equivalent to the DM (Gähler

& Rhyner, 1986). Generalized octagonal and icosahedral

patterns discussed in this paper are obtained from 8D and 12D

lattices by the PM. The section method (SM) is a slight

modification of the PM. It uses the minimal space that is

necessary to describe the pattern (4D and 6D spaces for our

cases) (Janssen, 1986). Furthermore, it is applicable to the

calculation of diffraction patterns, which is essential for

structure analysis (Yamamoto & Ishihara, 1988; Yamamoto,

1992). In crystallography, therefore, the SM is superior to the

other methods. For generalized octagonal and icosahedral

patterns, the PM is insufficient to obtain the diffraction pattern

because it only needs the unit cell of the nD lattice (n ¼ 8 or

12), while for the calculation of the diffraction patterns its

projection onto the 2D or 3D internal (complementary,

perpendicular) space called the occupation domain (atom

surface, window) is necessary. In the SM, the patterns are

obtained from the occupation domains (OD) by taking the

crosspoint at the external (physical, parallel) space.

Many patterns obtained from the IDM and several patterns

obtained from the DM or PM have not yet been obtained by

the SM. In particular, generalized octagonal, decagonal,

dodecagonal and icosahedral patterns derived from 8D, 10D

and 12D space by the PM or the DM (Whittaker & Whittaker,

1988; Kramer & Neri, 1984) have not been derived yet using

the SM and their diffraction patterns are not known. This

paper reconsiders the generalized octagonal and icosahedral

patterns obtained from periodic 8- and 12-grids by the DM

with the SM and shows their ODs and diffraction patterns.

They have the same symmetry (4D p8mm and 6D Pm�33�55) as

the patterns obtained from the periodic 4-grid (Beenker

pattern, BP) and 6-grid (3DPP) and are generally regarded as

superstructures of the BP or 3DPP as shown later. Their lattice

constant is twice as large as that of the BP or 3DPP.

The arrangement of the present paper is as follows. In x2,

the derivation of generalized quasiperiodic patterns by the

DM is briefly summarized. The equivalent section methods are

discussed in x3 and the occupation domains for the generalized

quasiperiodic patterns are derived. In x4, their diffraction

patterns are shown.

2. Dual method

The dual method is equally applicable to both generalized BPs

in 2D space (Whittaker & Whittaker, 1988) and generalized

3DPPs. In this section, derivations of the generalized octag-

onal patterns in 2D space and the generalized 3DPPs in 3D

space will be briefly described for discussion in the next

section.

(a) Generalized octagonal patterns. The octagonal patterns

with edge length a0 can be derived from the periodic 8-grid,

which is given by

e�i � x ¼ ni þ �i ði � 8Þ; ð1Þ

with an integer ni and the unit vectors in the external

(physical) space



e�i ¼ a�0fcos½2�ði� 1Þ=8�a1 þ sin½2�ði� 1Þ=8�a2g; ð2Þ

where a�0 ¼ 1=a0, �i is the shift of the ith grid along e�i and ai

ði ¼ 1; 2Þ are the unit vectors of 2D external space. The

vectors x given by equation (1) are on parallel lines normal to

the direction specified by e�i . Note that there exists one line

belonging to the ði� 4Þth grid between two consecutive lines

with the interval a0 except for a singular case with

ð�i þ �iþ4Þ=2 ¼ 0 (mod 0.5) because e�i�4 ¼ �e�i . If

ð�i þ �iþ4Þ=2 ¼ �0:25 (mod 0.5) for i � 4, the grids are

equivalent to 4-grids with a half interval, which leads to the

well known BP (Beenker, 1982). In order to obtain a pattern

with octagonal symmetry, ð�i þ �iþ4Þ=2 ¼ � (i � 4) must be

fulfilled while � 0i ¼ ð�i � �iþ4Þ=2 can take an arbitrary value

since it does not change the local isomorphism class of

resulting patterns (Socolar, 1989). Let the intersection of the

ith and jth grids with ni and nj be y ¼ a0½y1a1 þ y2a2�. Then we

can assign 8 integers, Ki ¼ be
�
i � y� �ic, where bxc is the

largest integer less than or equal to x. In particular, Ki ¼ ni

and Kj ¼ nj. Different sets of � 0i lead to locally isomorphic

structures. Corresponding to the intersection, we place a

rhombus spanned by ei and ej at r0 ¼
P8

k¼1 Kkek, which has

corners at r0, r0 þ ei, r0 þ ej, r0 þ ei þ ej, where ek ¼ a2
0e�k for

any k. Two cases are shown in Figs. 1(a) and 1(b), which

correspond to � ¼ 0:25 and 0.1. As is clear from the figure, the

former is equivalent to the BP and the other patterns with

� 6¼ �0:25 (mod 1) can be regarded as a superstructure of the

BP as shown later. The characteristic feature of a generalized

octagonal pattern is the appearance of a larger square and

rhombus consisting of four tiles with the same orientation,

which never appear in the BP.

(b) Generalized icosahedral patterns. These are derived

from the 3D 12-grid,

e�i � x ¼ ni þ �i ði � 12Þ; ð3Þ

by a similar method. The vectors e�i are given by

e�1 ¼ a�0a3;

e�iþ1 ¼ a�0fcosð2�i=5Þa1 þ sinð2�i=5Þa2g sin �

þ cos �a3 ð1 � i � 5Þ

ð4Þ

with � ¼ cos�1ð1=
p

5Þ and e�6þi ¼ �e�i , where ai ði ¼ 1; 2; 3Þ

are the unit vectors in the 3D external space. In this case, the

ith grid is a set of equidistant 2D planes normal to e�i and an

intersection is given by three planes. Let the intersection of

the ith, jth and kth grids with ni, nj and nk be y. Take

Kl ¼ be
�
l � y� �lc for all l ð1 � l � 12Þ. Then a rhombus

spanned by ei, ej, ek at
P12

l¼1 Klel gives generalized icosahedral

patterns. The projections of the patterns along the fivefold axis

with � ¼ ð�i þ �iþ6Þ=2 ¼ 0:25 and 0.1 are shown in Figs. 2(a)

and 2(b). As shown by Kramer & Neri (1984), the former gives

the 3DPP. It will be shown in the next section that the patterns

with � 6¼ �0:25 (mod 0.5) are superstructures of the 3DPP. A

generalized icosahedral pattern includes two consecutive

rhombi with the same orientation in contrast to the 3DPP. A

different � 0i ¼ ð�i � �iþ6Þ=2 ði � 6Þ gives locally isomorphic

patterns.

As shown in a case of quasi-periodic grids as in the Fibo-

nacci hexagrid (Socolar & Steinhardt, 1986), if more than two

lines or more than three planes cross at one point, we have a

singular point where tiles formed by the aggregation of several

rhombi or rhombohedra will appear. In the present case,

however, the grid is periodic and just two different intervals of

grids exist. In such a case, it can be shown that, even if singular

points exist, their point density is zero as shown in Appendix

A. The effect of such points can be recognized as point defects,

which does not contribute to the diffraction intensity. There-

fore almost everywhere the octagonal patterns consist of two

rhombi and the icosahedral patterns of two rhombohedra, as

shown in Figs. 1 and 2.

3. Section method

The patterns given in the previous section are also obtainable

by the PM because this is shown to be equivalent to the dual

method (Gähler & Rhyner, 1986). The octagonal (or icosa-

hedral) patterns are obtained from 8D (or 12D) space by the

PM but 4D (6D) space is sufficient to describe the structure. In
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Figure 1
Octagonal patterns for (a) � ¼ 0:25 and (b) 0.1. The former is identical to
the Beenker pattern (� 0i ¼ 0 for i � 4). Four consecutive squares or
rhombi appear in the latter.



the PM, we use a polytope which is the projection of the unit

cell in the 8D (12D) space onto the 6D (9D) internal space. In

order to obtain their diffraction patterns, it is necessary to

obtain the ODs that are the projection of the polytope onto

the minimal internal space, which is 2D (3D) space.

In the SM, the quasiperiodic structures are described as a

crystal (periodic structure) in a higher-dimensional space with

the minimal dimension (in contrast to the PM, where an

additional dimension is necessary for the cases discussed in

this paper). Then the quasiperiodic patterns are given as an

intersection of the periodic structure in the higher-dimen-

sional space with the external space and their diffraction

pattern is regarded as the projection of the Fourier amplitudes

of the structure in the higher-dimensional space onto the

external space. In the previous section, we did not use the

higher-dimensional space explicitly. However, as discussed by

Kramer & Neri (1984) and Whittaker & Whittaker (1988), the

vectors e�i in (2) and (4) can be regarded as the projection of

the unit vectors of a higher-dimensional reciprocal lattice onto

the external space. The higher-dimensional space is divided

into the external and internal spaces by use of group theory.

(a) Octagonal patterns. The octagonal group is generated by

an eightfold rotation. On the basis of the unit vectors e�i of the

octagonal lattice in the 8D space, the matrix representation of

a rotation operator in the octagonal group can be expressed by

an 8� 8 integral matrix. The octagonal group is generated by

the eightfold rotation around the body-diagonal direction, the

matrix representation of which is given by the permutation

matrix

1 2 3 4 5 6 7 8

2 3 4 5 6 7 8 1

� �
:

This is reducible into two one-dimensional and three two-

dimensional irreducible representations. The two-dimensional

irreducible representations of the eightfold rotation are given

by

Rk ¼
cosð2�k=8Þ � sinð2�k=8Þ

sinð2�k=8Þ cosð2�k=8Þ

� �

ðk ¼ 1; 2; 3Þ; ð5Þ

while the one-dimensional representations are R4 ¼ �1 and

R5 ¼ 1. The basis vectors of the first two-dimensional repre-

sentation span the external space, and the others span the

internal space. The rank of the matrix is four in the octagonal

case, so that the four-dimensional space is sufficient to

describe the structure Janssen (1986). The internal space

spanned by the basis vectors of the third two-dimensional

representation is necessary but the other internal space is

redundant. Therefore we can express all the patterns derived

from the 8D space in the 4D space, which is spanned by the

basis vectors of R1 and R3.

When the unit vectors in the 8D lattice are e�i and the basis

vectors of the irreducible representations are ai ði � 8Þ, e�i are

written in terms of ai as

e�i ¼ a�0
P8

j¼1

Mijaj ð6Þ

with

M ¼
M1 M2

�M1 M2

� �
; ð7Þ

where ai ði ¼ 1; 2; 3; 4Þ are the basis vectors of the first and

third two-dimensional representations [k ¼ 1; 3 in equation

(5)]. The vectors a5 and a6 are those of the second two-

dimensional representation and a7 and a8 those of the two

one-dimensional representations. The 4� 4 matrices M1 and

M2 are given by
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Figure 2
Puckered surfaces of icosahedral patterns normal to a fivefold axis for
(a) � ¼ 0:25 and (b) 0.1. The former is identical to the 3DPP
[� 0 ¼ ð0; 1; 2; 3; 4; 5Þ=10]. Thick and thin lines represent the boundary
of two rhombohedra and an edge of a rhombohedron, respectively. The
characteristic feature in (b) is the appearance of two consecutive
rhombohedra with the same orientation, which never appear in (a).



M1 ¼
1

2

c0 s0 c0 s0

c1 s1 c3 s3

c2 s2 c6 s6

c3 s3 c1 s1

2
6664

3
7775; ð8Þ

M2 ¼
1

2

1 0 t t

0 1 �t t

�1 0 t t

0 �1 �t t

2
6664

3
7775; ð9Þ

where a�0 is the lattice constant of the hypercubic (reciprocal)

lattice, ci ¼ cosð2�i=8Þ, si ¼ sinð2�i=8Þ and t ¼ 1=
ffiffiffi
2
p

. The

new vectors e�0i ¼ ðe
�
i � e�4þiÞ=2 and e�04þi ¼ ðe

�
i þ e�4þiÞ=2

ði � 4Þ are given by

e�0i ¼ a�0
P8

j¼1

M0ijaj ð10Þ

with

M0 ¼
M1 0

0 M2

� �
: ð11Þ

The vectors e�0i are obtained from e�i by e�0i ¼
P8

j¼1ð
~SS�1
Þije
�
j ,

where ð ~SS�1
Þ ¼ S=2 with

S ¼

1 0 0 0 �1 0 0 0

0 1 0 0 0 �1 0 0

0 0 1 0 0 0 �1 0

0 0 0 1 0 0 0 �1

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

2
66666666664

3
77777777775
: ð12Þ

The unit vectors ei and e0i reciprocal to e�i and e�0i are obtained

from the right-hand side of equations (6)–(11) by replacing a�0
with a0 ¼ 1=a�0 , since M and M0 are orthogonal matrices.

Similarly, we have a�i ¼
P8

j¼1
~MMije

�
j and a�i ¼

P8
j¼1

~MM0ije
�0
j .

These show that a05, a06,
ffiffiffi
2
p

a07,
ffiffiffi
2
p

a08 are commensurable with

e�i and e�0i . The commensurability makes the 4D description

possible.

The vectors e0i reciprocal to e�0i are e0i ¼ ei � e4þi and

e04þi ¼ ei þ e4þi ði � 4Þ. In the following, xi stand for the

coordinates with respect to ei and x0i stand for those to e0i and

vectors with coordinates xi and x0i are shown by ðx1; x2; . . . ; x8Þ

and ðx1; x2; . . . ; x8Þ
0. The coordinates are transformed by

~SS�1
¼ S=2 and the unit vectors ei by S. The metric tensor has

the form ei � ej ¼ a2
0�ij, indicating that the lattice is hypercubic,

while e0i � e
0
j ¼ 2a2

0�ij showing a hypercubic lattice with

a0 ¼
ffiffiffi
2
p

a0. [Rigorously speaking, we do not need a hypercubic

lattice and can employ a lattice with lower symmetry which

has lattice constants equal to the number of the irreducible

representations (Janssen, 1986) but it is employed for sim-

plicity.]

Since the determinant of the matrix S is 24 ¼ 16, the basis

vectors e0i span a sublattice of the original one which is

spanned by ei. It should be noted that the sublattice is also a

hypercubic lattice. There are 16 lattice points in the unit cell of

the sublattice. If we consider them as the centering transla-

tions, the basis vectors give a different setting of the same

lattice which has 16 centering translations. To obtain quasi-

periodic patterns by the dual method, we need to place a

polytope at each lattice point, which is the projection of the

unit cell onto the internal space. Then the total symmetry is

not hypercubic any more since the 16 points are not transla-

tionally equivalent and it is octagonal. Therefore, in the

following, the 16 points are regarded as atom sites in 4D space,

where the OD’s are located and the lattice is regarded as the

24-fold superlattice. The 16 points in the unit cell of the

superlattice are classified into six Wyckoff positions based on

their site symmetry (see Table 1).

In the SM, the lattice point r0 appears in the external space

when the OD intersects with the external space. The OD is a

convex polygon and is obtained from the polytope which is a

projection of the unit cell in 8D space onto the 6D internal

space. The unit vectors e04þi ði � 4Þ have no a1 and a2 compo-

nents, so that they are perpendicular to the external space.

Therefore the two vectors with the same e0i components ði � 4Þ

are projected at the same position in the external space even if

their e04þi ði � 4Þ components are different. The intersection of

the polytope with the four-dimensional space spanned by

e0i ði � 4Þ gives the OD. The ODs at the 16 points mentioned

above are generally different. Those of the positions belonging

to the same Wyckoff position are, however, related to each

other by symmetry operations.

First we consider the simplest case, where the external space

passes through the origin of the lattice. Then the external

space passes through the origin or other corners of the poly-

tope as shown below. Let the positions of each corner of the

polytope be y ¼ ðy1; . . . ; y8Þ, with yi ¼ 0 or 1 ði � 8Þ. The

positions of the corners of the polytope at x are xþ y. When

these are on the external plane passing through the origin,

their ai ði ¼ 5; 6; 7; 8Þ components x � ai þ y � ai must be zero.

This relation is fulfilled for some corners of the polytope. The

28 corners y of the polytope are classified into groups with

their ai ði ¼ 5; 6; 7; 8Þ components y � ai. The OD for the

Wyckoff position x is defined by the groups with the y � ai

ði ¼ 5; 6; 7; 8Þ, which are equal to �x � ai. This is a convex

polygon consisting of the outermost points.
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Table 1
The Wyckoff positions of the lattice points of the 8D hypercubic lattice in
the superstructure cell.

The first column is the label used in Fig. 3. The second column stands for the
order (number of equivalent positions). The third column is the site symmetry.
The fourth and fifth columns show the first four coordinates of the position x in
8D space, which has the form ð0; x0Þ and ðx0;�x0Þ. The last column shows the
a8 component of x, x � a8, in units of a0=

ffiffiffi
8
p

.

Label Order Site symmetry x0 x0 �

A 1 8mm ð0; 0; 0; 0Þ0 ð0; 0; 0; 0Þ0 0
B 4 mm ð1; 0; 0; 0Þ0 ð1; 0; 0; 0Þ=20 1/2
C 4 mm ð1; 1; 0; 0Þ0 ð1; 1; 0; 0Þ=20 1
D 2 4mm ð1; 0; 1; 0Þ0 ð1; 0; 1; 0Þ=20 1
E 4 mm ð0; 1; 1; 1Þ0 ð0; 1; 1; 1Þ=20 3/2
F 1 8mm ð1; 1; 1; 1Þ0 ð1; 1; 1; 1Þ=20 2



An infinite number of octagonal patterns is obtained by

considering the external space passing through
ffiffiffi
8
p
�a0a8 with

0 � � � 0:25, since a8 is the basis vector of the identity

representation. Consider the edge vector �y ¼

ð�y1;�y2; . . . ;�y8Þ going out from the corner y of the unit

cell. They are vectors �yi ¼ 1 for yi ¼ 0 and zero for others.

Therefore their number is equal to the number of zeros in

ðy1; y2; . . . ; y8Þ. It depends on the corner y. We remove the

redundant internal space components from �y except for a8

components, which is denoted by �y0. Then the points

xþ yþ ð
ffiffiffi
8
p
�a0=gÞ�y0 are on the external space and define

the ODs for the position x, where g is the a8 component of �y.

The ODs for � ¼ 0:25 and 0.1 are shown in Fig. 3. All the ODs

are the same for � ¼ 0:25 and have octagonal symmetry. This

means that all the Wyckoff positions are equivalent under the

translations ð1; 0; 0; 0Þ0=2 etc. and the structure has a smaller

unit cell with half the lattice constant. This gives the BP with

edge length a0=2. The other cases can be regarded as super-

structures of this as is clear from the diffraction patterns

shown later. On the other hand, � ¼ 0 gives the BP with an

edge length of a0 in which each rhombus or square consists of

four small rhombi or squares with an edge length of a0=2. It is

intuitively clear that this is a superstructure of the BP since the

edge length is doubled. Direct calculations show that these

ODs give the same pattern as that with the same � derived

from the dual method.

(b) Icosahedral patterns. The ODs of icosahedral patterns

corresponding to those discussed in the previous section can

be obtained by a similar method. The unit vectors of the 12D

lattice e�i ði � 12Þ are given by the unit vectors ai ði � 12Þ of

the 3D space a1, a2 and a3 and the 9D internal space

a4; . . . ; a12. The transformation matrix M is obtained from the

12D representation of the icosahedral group based on the unit

vectors e�i and its irreducible representations. In the present

case, each 12� 12 integral matrix is reduced to a

3þ 3þ 5þ 1 block-diagonal matrix by the standard group-

theoretical technique (Kramer & Neri, 1984; Janssen, 1986). In

particular, the one-dimensional representation is the identity

representation. When a1; . . . ; a6 are the basis vectors of the

two 3D irreducible representations and a7; . . . ; a12 are those

of the 5D and 1D irreducible representations, the matrix M

has the form of equation (7) with the following 6� 6 matrices

M1 and M2.

M1 ¼
1

2

0 0 1 0 0 1

c1s s1s c c2s s2s �c

c2s s2s c c4s s4s �c

c3s s3s c c1s s1s �c

c4s s4s c c3s s3s �c

c5s s5s c c5s s5s �c

2
6666664

3
7777775
; ð13Þ
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Table 2
The Wyckoff positions of the lattice points of the 12D hypercubic lattice
in the superstructure cell.

The first column is the label used in Fig. 4. The second and third columns give
their order and site symmetry. The fourth and fifth columns show the first six
coordinates of the position x in 12D space, which has the form ð0; x0Þ and
ðx0;�x0Þ. The last column shows the a12 component of x, x � a12 in units of
a0=

ffiffiffiffiffi
12
p

.

Label Order Site symmetry x0 x0 �

A 1 m�33�55 ð0; 0; 0; 0; 0; 0Þ0 ð0; 0; 0; 0; 0; 0Þ0 0
B 6 �55m ð1; 0; 0; 0; 0; 0Þ0 ð1; 0; 0; 0; 0; 0Þ=20 1/2
C 15 mmm ð1; 1; 0; 0; 0; 0Þ0 ð1; 1; 0; 0; 0; 0Þ=20 1
D 10 �33m ð1; 1; 1; 0; 0; 0Þ0 ð1; 1; 1; 0; 0; 0Þ=20 3/2
E 10 �33m ð0; 0; 0; 1; 1; 1Þ0 ð0; 0; 0; 1; 1; 1Þ=20 3/2
F 15 mmm ð1; 1; 1; 1; 0; 0Þ0 ð1; 1; 1; 1; 0; 0Þ=20 2
G 6 �55m ð1; 1; 1; 1; 1; 0Þ0 ð1; 1; 1; 1; 1; 0Þ=20 5/2
H 1 m�33�55 ð1; 1; 1; 1; 1; 1Þ0 ð1; 1; 1; 1; 1; 1Þ=20 3

Figure 3
The occupation domains for the six independent Wyckoff positions of
octagonal patterns given in Table 1. (a) � ¼ 0:25. (b)–(g) � ¼ 0:1.

Figure 4
The occupation domains for the eight independent Wyckoff positions of
icosahedral patterns shown in Table 2. (a) � ¼ 0:25. (b)–(i) � ¼ 0:1.



where ci ¼ cosð2�i=5Þ, si ¼ sinð2�i=5Þ, c ¼ cos � and s ¼ sin �
with � ¼ cos�1ð1=

p
5Þ and

M2 ¼
1

2
ffiffiffi
6
p

ffiffiffi
3
p

�1
ffiffiffi
2
p ffiffiffi

3
p

�1
ffiffiffi
2
p

�
ffiffiffi
3
p

�1
ffiffiffi
2
p

�
ffiffiffi
3
p

�1
ffiffiffi
2
p

0 2
ffiffiffi
2
p

0 2
ffiffiffi
2
p

�
ffiffiffi
3
p

1 �
ffiffiffi
2
p ffiffiffi

3
p

�1
ffiffiffi
2
p

ffiffiffi
3
p

1 �
ffiffiffi
2
p

�
ffiffiffi
3
p

�1
ffiffiffi
2
p

0 �2 �
ffiffiffi
2
p

0 2
ffiffiffi
2
p

2
6666664

3
7777775
: ð14Þ

The 6D expression of the icosahedral patterns is obtained

from the superlattice spanned by e0i ¼ ei � e6þi and

e06þi ¼ ei þ e6þi ði � 6Þ, which are reciprocal to e�0i ¼

ðe�i � e�6þiÞ=2 and e�06þi ¼ ðe
�
i þ e�6þiÞ=2 ði � 6Þ. The block-

diagonal matrix in the present case is also given by equation

(11) with M1 and M2 given above. The unit vectors ei and e0i
span the hypercubic lattices with the lattice constants of a ¼ a0

and a0 ¼
ffiffiffi
2
p

a0. It should be noted that
ffiffiffi
2
p

a�7 ,
ffiffiffi
6
p

a�8 ,
ffiffiffi
3
p

a�9 ,ffiffiffi
2
p

a�10,
ffiffiffi
6
p

a�11,
ffiffiffi
3
p

a�12 are commensurable with e�i and e�0i .

The transformation matrix S has a form similar to equation

(12), the non-zero elements of which are Sii ¼ 1 ði � 12Þ,

Siðiþ6Þ ¼ �1 ði � 6Þ and Sðiþ6Þi ¼ 1 ði � 6Þ. The determinant of

S is 26 ¼ 64. There are 64 lattice points of the original lattice in

the unit cell of the superlattice. These positions are classified

into eight Wyckoff positions shown in Table 2. In order to

obtain the ODs located at these positions, we consider the

edge vectors �y going out from the corner y. We remove the

redundant internal space components from �y and denote it

as �y0. Then xþ yþ ð
ffiffiffiffiffi
12
p

�a0=gÞ�y0 are on the external space

passing through
ffiffiffiffiffi
12
p

�a0a12, where g is the a12 component of

�y. The outermost points of them construct the ODs. Fig. 4

shows the ODs for � ¼ 0:25 and 0.1. Note that all the ODs are

the same rhombic triacontahedron with an edge length of a0=2

for � ¼ 0:25. Therefore this structure has a half period in the

6D space. Similarly to the octagonal case, the pattern with

� ¼ 0 gives the 3DPP with the edge length of a0, where each

rhombohedron with an edge length of a0 is divided into eight

rhombohedra with the same shape but half the edge length.

For the intermediate cases with 0<� < 0:25, the consecutive

rhombi with the same orientation appear sometimes as in the

case of � ¼ 0. Their frequency becomes smaller with

approaching � ¼ 0:25. As is well known, 3DPP has no such

arrangement of rhombohedra.

Finally, we point out that the total area or volume of all

occupation domains in a unit cell remains unchanged by the

change of �. This means that the point density of the pattern is

the same and is independent of the different arrangements of

points. Therefore, a slight change in � causes a phason flip. �
changes continuously, so that we get an infinite number of

octagonal and icosahedral patterns with the same point

density.

4. Diffraction patterns

The diffraction pattern is obtained from the structure in the

minimal dimension which is four in the octagonal structures

and six in the icosahedral ones. The minimal spaces are the

subspaces of the spaces spanned by e0i ði � n=2Þ, where n is 8

and 12 in the octagonal and icosahedral structures. Then the

lattice constant is defined by a0 ¼
ffiffiffi
2
p

a0. In the following

sections, the projection of the positional vector onto this space

is simply written as x and the prime is dropped for simplicity.

The diffraction pattern is obtained from the Fourier integrals

of the ODs obtained in the previous section. In the octagonal

or icosahedral quasicrystal, the ODs are polygons or poly-

hedra. Then the structure factor is given by (Yamamoto &

Ishihara, 1988; Yamamoto, 1992)
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Table 3
The vectors defining the independent polygons in the occupation domains for generalized octagonal patterns.

The vectors ej ð j ¼ 1; 2; . . .Þ represent the corners of an occupation domain from its center. The superscript i means the internal space component. The two vectors
defining a triangle are represented by (i, j) in the last line, where i and j represent the ith and jth vectors. The occupation domain is generated from the independent
triangles by the site symmetry given in the heading. (s ¼ 1

2� � and t ¼ �.)

OD A 8mm
e1 ¼ ðt;�t; 0; tÞi e2 ¼ ðt;�t;�t; tÞi

(1,2)

OD B mm
e1 ¼ ðs;�t; 0; tÞi e2 ¼ ðs;�t;�t; tÞi e3 ¼ ðs; t;�t; tÞi e4 ¼ ð�s; t;�t; tÞi e5 ¼ ð�s; t;�t;�tÞi e6 ¼ ð�s; t; 0;�tÞi

(1,2), (2,3), (3,4), (4,5), (5,6)

OD C mm
e1 ¼ ðs;�s; t; tÞi e2 ¼ ðs;�s;�t; tÞi e3 ¼ ðs; s;�t; tÞi e4 ¼ ð�s; s;�t; tÞi e5 ¼ ð�s; s;�t;�tÞi

(1,2), (2,3), (3,4), (4,5)

OD D 4mm
e1 ¼ ðs;�t; 0; tÞi e2 ¼ ðs;�t;�s; tÞi e3 ¼ ðs; t;�s; tÞi e4 ¼ ð0; t;�s; tÞi

(1,2), (2,3), (3,4)

OD E mm
e1 ¼ ðs;�s; s; 0Þi e2 ¼ ðs;�s; s; tÞi e3 ¼ ðs;�s;�s; tÞi e4 ¼ ðs; s;�s; tÞi e5 ¼ ð�s; s;�s; tÞi e6 ¼ ð�s; s;�s; 0Þi

(1,2), (2,3), (3,4), (4,5), (5,6)

OD F 8mm
e1 ¼ ðs;�s; 0; sÞi e2 ¼ ðs;�s;�s; sÞi

(1,2)



FðqÞ ¼
P
fRj�g

P
�

a�f�ðqeÞp� exp½�B�ðqeÞ2=4�

� exp½2�iq � ðRx� þ �Þ�F�
0 ðR

�1qÞ; ð15Þ

where the multiplicity, position, temperature factor and

occupancy of the �th independent ODs are represented by a�,

x�, B� and p�. F�0 ðqÞ and f�ðqeÞ are the Fourier integral and

atomic scattering factor of the �th OD at the diffraction

vector q and its external space component qe. F�
0 ðqÞ is calcu-

lated by using the symmetry of the shape of ODs from the

independent parts, which are decomposed into several trian-

gles or tetrahedra. Thus the structure factor consists of the

summation of Fourier integrals of triangles or tetrahedra

which are given analytically. In the present cases, there exist

six or eight independent sites in general as shown in the

previous section. In order to calculate the Fourier integral of

an OD, the site symmetry is applicable as shown in a previous

paper (Yamamoto, 1996). This enables us to calculate the

Fourier integral from that of a smaller independent part.

Corner vectors of each independent part are listed in Tables 3

and 4. In Figs. 5 and 6, the diffraction patterns corresponding
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Table 4
The vectors defining the independent polyhedra in the occupation domains for generalized 3DPP.

The symbols are the same as in Table 2. Three vectors defining a tetrahedron are represented by (i, j, k) in the last line. The occupation domain is generated from
the independent polyhedra by the site symmetry given in the heading. (s ¼ 1

2� � and t ¼ �.)

OD A m�33�55
ej ¼ ð�t;�t;�t; t;�t; tÞi ej ¼ ð�t;�t; t; t;�t; tÞi ej ¼ ð�t; 0; 0; t;�t; tÞi

(1,2,3)

OD B �55m
e1 ¼ ð�s;�t;�t; t;�t; tÞi e2 ¼ ð�s;�t; t; t;�t; tÞi e3 ¼ ð�s; 0; 0; t;�t; tÞi e4 ¼ ð0;�t; 0; t;�t; tÞi

e5 ¼ ðs;�t;�t; t;�t; tÞi e6 ¼ ð�s; t; t; t;�t; tÞi e7 ¼ ð�s;�t; t;�t; t; tÞi e8 ¼ ð�s;�t; t; t; t; tÞi

e9 ¼ ð�s; 0; t; 0; t; tÞi e10 ¼ ð�s; t; t; t; t; tÞi

(1,2,3), (1,2,4), (1,5,4), (2,6,3), (7,8,9), (8,10,9)

OD C mmm
e1 ¼ ð�s;�s;�t; t;�t; tÞi e2 ¼ ð�s;�s; t; t;�t; tÞi e3 ¼ ð�s; 0; 0; t;�t; tÞi e4 ¼ ð�s; s;�t; t;�t; tÞi

e5 ¼ ð�s; s; t; t;�t; tÞi e6 ¼ ð0; 0;�t; t;�t; tÞi e7 ¼ ð�s;�s; t;�t;�t; tÞi e8 ¼ ð�s;�s; t;�t; t; tÞi

e9 ¼ ð�s;�s; t; 0; 0; tÞi e10 ¼ ð0;�s; t;�t; 0; tÞi e11 ¼ ðs;�s; t;�t;�t; tÞi e12 ¼ ðs;�s; t;�t; t; tÞi

e13 ¼ ð�s; s;�t;�t; t;�tÞi e14 ¼ ð�s; s;�t; t; t;�tÞi e15 ¼ ð�s; s; 0; 0; t;�tÞi e16 ¼ ð�s; s; t;�t; t;�tÞi

e17 ¼ ð�s; s; t; t; t;�tÞi e18 ¼ ð�s; s;�t; t; t; tÞi e19 ¼ ð�s; s; 0; t; t; 0Þi

(1,2,3), (1,4,3), (2,5,3), (1,4,6), (4,5,3), (7,8,9), (7,8,10), (7,11,10), (8,12,10), (11,12,10), (13,14,15), (13,16,15), (14,17,15), (16,17,15), (14,18,19)

OD D �33m
e1 ¼ ð�s;�s;�s; t;�t; tÞi e2 ¼ ð�s;�s; s; t;�t; tÞi e3 ¼ ð�s; 0; 0; t;�t; tÞi e4 ¼ ð�s; s; s; t;�t; tÞi

e5 ¼ ð�s;�s; s;�t;�t; tÞi e6 ¼ ð�s;�s; s;�t; t; tÞi e7 ¼ ð�s;�s; s; 0; 0; tÞi e8 ¼ ð0;�s; s;�t; 0; tÞi

e9 ¼ ðs;�s; s;�t;�t; tÞi e10 ¼ ð0;�s; s; 0;�t; tÞi e11 ¼ ðs;�s; s; t;�t; tÞi

(1,2,3), (2,4,3), (5,6,7), (5,2,7), (5,6,8), (5,9,8), (5,2,10), (5,9,10), (2,11,10), (9,11,10)

OD E �33m
e1 ¼ ðt;�t;�t;�s;�s;�sÞi e2 ¼ ðt;�t; t;�s;�s;�sÞi e3 ¼ ðt;�t; 0;�s;�s; 0Þi e4 ¼ ðt;�t;�t;�s;�s; sÞi

e5 ¼ ðt;�t; 0;�s; 0;�sÞi e6 ¼ ðt;�t;�t;�s; s;�sÞi e7 ¼ ðt;�t; t;�s; s;�sÞi e8 ¼ ðt;�t;�t; 0;�s; 0Þi

e9 ¼ ðt;�t;�t; s;�s; sÞi e10 ¼ ð�t;�t; t;�s; s;�sÞi e11 ¼ ð�t; t; t;�s; s;�sÞi e12 ¼ ð0; 0; t;�s; s;�sÞi

e13 ¼ ðt; t; t;�s; s;�sÞi

(1,2,3), (1,4,3), (1,2,5), (1,6,5), (2,7,5), (1,4,8), (4,9,8), (6,7,5), (10,11,12), (11,13,12)

OD F mmm
e1 ¼ ð�s;�s;�s; s;�t; tÞi e2 ¼ ð�s;�s; s; s;�t; tÞi e3 ¼ ð�s; 0; 0; s;�t; tÞi e4 ¼ ð�s; s;�s; s;�t; tÞi

e5 ¼ ð0;�s; 0; s;�t; tÞi e6 ¼ ð�s; s; s; s;�t; tÞi e7 ¼ ð�s;�s; s;�s;�t; tÞi e8 ¼ ð�s;�s; s;�s; t; tÞi

e9 ¼ ð�s;�s; s; 0; 0; tÞi e10 ¼ ð0;�s; s;�s; 0; tÞi e11 ¼ ðs;�s; s;�s;�t; tÞi e12 ¼ ð�s;�s; s; s; t; tÞi

e13 ¼ ðs;�s; s;�s; t; tÞi e14 ¼ ð�s; 0; s; 0; t; tÞi e15 ¼ ð�s; s;�s; s;�t;�tÞi e16 ¼ ð�s; s;�s; s; 0; 0Þi

(1,2,3), (1,4,3), (1,2,5), (2,6,3), (4,6,3), (7,8,9), (7,2,9), (7,8,10), (7,11,10), (8,12,9), (8,13,10), (2,12,9), (11,13,10), (8,12,14), (15,4,16)

OD G �55m
e1 ¼ ð�s;�s;�s; s;�s; tÞi e2 ¼ ð�s;�s; s; s;�s; tÞi e3 ¼ ð�s; 0; 0; s;�s; tÞi e4 ¼ ð�s; s;�s; s;�s; tÞi

e5 ¼ ð0; 0;�s; s;�s; tÞi e6 ¼ ðs; s;�s; s;�s; tÞi e7 ¼ ð�s;�s; s;�s; s;�tÞi e8 ¼ ð�s;�s; s;�s; s; tÞi

e9 ¼ ð�s; 0; s;�s; s; 0Þi e10 ¼ ð�s; s; s;�s; s;�tÞi

(1,2,3), (1,4,3), (1,4,5), (4,6,5), (7,8,9), (7,10,9)

OD H m�33�55
e1 ¼ ð�s;�s;�s; s;�s; sÞi e2 ¼ ð�s;�s; s; s;�s; sÞi e3 ¼ ð�s; 0; 0; s;�s; sÞi

(1,2,3)

Figure 5
Diffraction patterns of octagonal patterns for (a) � ¼ 0:25 and (b) 0.1.



to the cases given in previous sections are shown. As is clear

from the comparison between Figs. 5(a) and 5(b) or Figs. 6(a)–

(c) and Figs. 6(d)–( f), there are satellite reflections in the

latter that are absent in the former. In particular, it is noted

that in the latter there exists a reflection at the midpoint of two

reflections in the former. This clearly shows that the latter is a

superstructure of the former.

5. Concluding remarks

The present paper shows that the octagonal and icosahedral

patterns derived from 8 and 12 grids by the DM are super-

structures of the Beenker pattern and the three-dimensional

Penrose pattern. They can be expressed in four- and six-

dimensional spaces with a larger unit cell. As a result, satellite

reflections appear in their diffraction patterns. The derivation

of the occupation domains for a general case was given.

APPENDIX A

We show the distribution of singular points in the dual method

discussed in x2. It is sufficient to consider the case with � 0i ¼ 0

since non-zero � 0i leads to a locally isomorphic pattern (see

text).

We consider first the octagonal patterns. Then �i ¼ �iþ4 ¼ �
ði ¼ 1; 2; 3; 4Þ. Let the three grid lines normal to e�i , e�j and e�j
(i 6¼ j 6¼ k mod 4) cross at y. Then from equation (1),

ci si

cj sj

ck sk

2
4

3
5 y1

y2

� �
¼

ni þ �
nj þ �
nk þ �

2
4

3
5; ð16Þ

where ci ¼ cosð2�i=8Þ and si ¼ sinð2�i=8Þ. The solution of the

above equation exists if and only if the following condition is

fulfilled.

ci si ni þ �
cj sj nj þ �
ck sk nk þ �

������
������ ¼ 0: ð17Þ

We write the determinant of the 2� 2 matrix MðijÞ formed

by (ci, si) and (cj, sj) as �ij. Then the above equation becomes

�jkni ��iknj þ�ijnk ¼ �ð�jk ��ik þ�ijÞ�: ð18Þ

j�ijj represents the area of the rhombus (or square) with edge

vectors with unit length, e�i =a�0 and e�j =a�0 , which is similar to

the rhombus or the square appearing in the octagonal pattern

shown in Fig. 1. It is, therefore, 1=
ffiffiffi
2
p

or 1.

Instead of solving the above equation for all possible

triplets ði; j; kÞ, we can solve it for topologically different cases.

There are three such cases: ð1; 2; 3Þ, ð1; 3; 4Þ, ð1; 3; 6Þ. Since

�12 ¼ �23 ¼ �34 ¼ 1=
ffiffiffi
2
p

and �13 ¼ 1 and �14 ¼ �36 ¼

�1=
ffiffiffi
2
p

, equation (18) for these three cases leads to

ðni þ nkÞ=
ffiffiffi
2
p
� nj ¼ �ð

ffiffiffi
2
p
� 1Þ� ð19Þ

ðni þ njÞ=
ffiffiffi
2
p
þ nk ¼ �ð

ffiffiffi
2
p
þ 1Þ� ð20Þ

�ðni þ nkÞ=
ffiffiffi
2
p
þ nk ¼ ð�

ffiffiffi
2
p
� 1Þ�: ð21Þ

This means that, for a given � (0<� < 1=4), these have no

solution in general, except for an accidental case where the

right-hand sides are given by an integral linear combination of

1 and 1=
ffiffiffi
2
p

. In the trivial case with � ¼ 0, ni ¼ nj ¼ nk ¼ 0 is

the solution. Except for such a point, there exists no singu-

larity. This leads to the conclusion that, for a given triplet

ði; j; kÞ, these equations cross at one point at most.

Similarly, in the icosahedral patterns, if the four planes

normal to e�i , e�j , e�k and e�l (i 6¼ j 6¼ k 6¼ l mod 6) cross at one

point, the equation

cis sis c ni þ �
cjs sjs c nj þ �
cks sks c nk þ �
cls sls c nl þ �

��������

��������
¼ 0 ð22Þ

should be fulfilled, where ci ¼ cosð2�i=5Þ, si ¼ cosð2�i=5Þ,

c ¼ cosð�Þ and s ¼ sinð�Þ. This leads to the condition
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Figure 6
Diffraction patterns of icosahedral patterns for (a)–(c) � ¼ 0:25 and
(d)–( f ) � ¼ 0:1. Upper, middle and lower figures are fivefold, twofold
and threefold patterns.



�jklni ��iklnj þ�ijlnk ��ijknl

¼ �ð�jkl ��ikl þ�ijl ��ijkÞ�; ð23Þ

where �ijk is the determinant of the 3� 3 matrix MðijkÞ

defined by ðcis; sis; cÞ, ðcjs; sjs; cÞ, ðcks; sks; cÞ, the absolute

value of which gives the volume of the acute or obtuse

rhombohedron similar to those appearing in Fig. 2 but

with a unit edge length. It is, therefore, given by either

V1 ¼ ð2
ffiffiffiffiffiffiffiffiffiffiffi
2þ �
p

Þ=5 or V2 ¼ ð2
ffiffiffiffiffiffiffiffiffiffiffi
3� �
p

Þ=5. The ratio

V1=V2 ¼ � ¼ ð1þ
ffiffiffi
5
p
Þ=2 is an irrational number.

There are three topologically different quartets ði; j; k; lÞ:

ð1; 2; 3; 4Þ, ð1; 2; 3; 5Þ, ð2; 3; 4; 5Þ. Since �123 ¼ �134 ¼

��235 ¼ ��245 ¼ V1 and �124 ¼ �234 ¼ ��125 ¼ �135 ¼

�345 ¼ V2, equation (23) for these cases is given by

ð�nj � nlÞ� þ ðni þ nkÞ ¼ 2��1� ð24Þ

�ðni þ nlÞ� � ðnj þ nkÞ ¼ 2�2� ð25Þ

ðnj � nkÞ� þ ðni � nlÞ ¼ 0: ð26Þ

The first two have no solution in general, while the last one has

a solution ni ¼ nl, nj ¼ nk. Note that, even in this case, the

point density of such singular points is zero since such points

have one-to-one correspondence to 2D lattice points and the

point density of the 2D lattice points in 3D space is zero. All

the singular points are on a plane normal to the vector defined

by ðe�2 þ e�5Þ � ðe
�
3 þ e�4Þ.

In the case where the five planes intersect at the same point,

we need to consider the condition for a specified quintet

ði; j; k; l;mÞ. It is, however, sufficient to consider the case,

where ði; j; k; lÞ has a solution, in order to find possible solu-

tions. There is only one case ði; j; k; l;mÞ ¼ ð2; 3; 4; 5; 6Þ which

has a solution. In this case, in addition to the condition given

by equation (23), another condition which is obtained from it

by replacing the suffix l with m is imposed. Therefore, we

consider the quintet ði; j; k; l;mÞ ¼ ð2; 3; 4; 5; 6Þ. In this case,

in addition to equation (23), the other condition

�346ni ��246nj þ�236nk ��234nm

¼ �ð�346 ��246 þ�236 ��234Þ� ð27Þ

should be fulfilled. Since ��246 ¼ ��346 ¼ V1 and

�236 ¼ �456 ¼ V2, we have

ð�ni þ njÞ� þ ðnk � nmÞ ¼ 0: ð28Þ

Equations (27) and (28) lead to the solution

ni ¼ nj ¼ nk ¼ nl ¼ nm. This means that all the singular points

are on a line parallel to e�2 þ e�3 þ e�4 þ e�5 þ e�6 (or e�1). The

point density of such singular points is again zero since each

singular point corresponds to a lattice point of a 1D lattice.

The above consideration concludes that, even if there exist

singular points where more than two lines or three planes

intersect at the same point, their point density is zero.
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